Monocular Vision Navigation Sensor for Autonomous Aerial Refueling
نویسندگان
چکیده
Autonomous aerial refueling technology is an effective solution to extend flight duration of unmanned aerial vehicles, and also a great challenge due to its high risk. For autonomous probeand-drogue refueling tasks, relative navigation to provide relative position between the receiver aircraft and the refueling drogue is the first and essential step, and vision-based method is the most frequently used. A new monocular vision navigation sensor with image processing strategy consisting of the drogue detection method and the tracking method is developed for autonomous aerial refueling in this paper. In the drogue detection method, thresholding and mathematical morphology method are adopted to eliminate image interference, and contours extraction method is applied to obtain all contours, which are then subsequently checked to achieve target contour of drogue. In the tracking method, a rectangle of interest (ROI) of current frame image is determined by positioning results of last frame, and then processed by the previous drogue detection method. Finally, the proposed image processing strategy in monocular vision navigation sensor is validated using real flight images, which are captured from an autonomous aerial refueling testbed using a micro six-rotor aircraft as receiver aircraft.
منابع مشابه
ESTIMATION ALGORITHM FOR AUTONOMOUS AERIAL REFUELING USING A VISION BASED RELATIVE NAVIGATION SYSTEM A Thesis by ROSHAWN
Estimation Algorithm for Autonomous Aerial Refueling Using a Vision Based Relative Navigation System. (August 2005) Roshawn Elizabeth Bowers, B.S., Texas A&M University Chair of Advisory Committee: Dr. John Valasek A new impetus to develop autonomous aerial refueling has arisen out of the growing demand to expand the capabilities of unmanned aerial vehicles (UAVs). With autonomous aerial refuel...
متن کاملRobust Trajectory Tracking Controller for Vision Based Probe and Drogue Autonomous Aerial Refueling
This paper addresses autonomous aerial refueling between an unmanned tanker aircraft and an unmanned receiver aircraft using the probe-and-drogue method. An important consideration is the ability to achieve successful docking in the presence of exogenous inputs such as atmospheric turbulence. Practical probe and drogue autonomous aerial refueling requires a reliable sensor capable of providing ...
متن کاملTrajectory Tracking Controller for Vision-Based Probe and Drogue Autonomous Aerial Refueling
Practical autonomous aerial refueling between unmanned tanker and receiver aircraft using the probe-anddrogue method requires a reliable relative position sensor integrated with a robust relative navigation and control algorithm. The system must provide successful docking in the presence of disturbances caused by both the tanker wake vortex and atmospheric turbulence. This paper develops a refe...
متن کاملAiaa 2006-6504 Boom and Receptacle Au- Tonomous Air Refueling Using a Visual Pressure Snake Opti- Cal Sensor
Autonomous in-flight air refueling is an important capability for the future deployment of unmanned air vehicles, since they will likely be ferried in flight to overseas theaters of operation instead of being shipped unassembled in containers. This paper introduces a vision sensor based on active deformable contour algorithms, and a relative navigation system that enables precise and reliable b...
متن کاملMonocular Vision based Autonomous Navigation for a Cost-Effective Open-Source MAVs in GPS-denied Environments
In this paper, we present monocular vision guided autonomous navigation system for Micro Aerial Vehicles (MAVs) in GPS-denied environments. The major problem of a monocular system is that the depth scale of the scene can not be determined without prior knowledge or other sensors. To address this problem we solve a cost function, which consists of a drift-free altitude measurement together with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017